
𝛽̂ ,𝛽̂ 𝛽̂ ,𝛽̂ 
1 

8.1 Finding the Parameters of the Model 

After we choose the type of the model to be used we have to find its best param- 
eters, given the data in the training set. Recall that, during the learning, we do 
not know the values of the target attributes of the instances in the test set, but 
only the values of their predictive attributes. In our example, the real heights of 
Omar and Patricia were “hidden from” the learning algorithm; we used them 
only to measure the predictive performance of the resulting model. 

Each learning technique is, in essence, an optimization algorithm that finds 
the optimal parameters of the corresponding model given some objective func- 
tion. It means that the type of the model determines the learning algorithm or, 
in other words, each learning algorithm is designed to optimize a specific type 
of model. Several regression algorithms have been proposed, most of them in 
the area of statistics. Next, we briefly describe the most popular ones. 

 
8.1.1 Linear Regression 

The linear regression (LR) algorithm is one of the oldest and simplest regression 
algorithms. Although simple, it is able to induce good regression models, which 
are easily interpretable. 

Let’s take a closer look at our model height = 128.017 + 0.611 × weight. This 
will allow us to understand the main idea behind LR. Given the notation above, 
each instance x is associated with only one attribute, the weight (that’s why it 
is usually called univariate linear regression) and the target attribute y is asso- 
ciated with the height. As we have already shown, this model is the equation of 
a line in a two-dimensional space. We can see that there are two parameters, 
𝛽̂0  and 𝛽̂1, such that 𝛽̂1  is associated with the importance of the attribute x1, the 
weight. The other parameter, 𝛽̂0 , is called the intercept and is the value of ŷ 
when the linear model intercepts the y-axis, in other words when x1 = 0. 

The result of the optimization process is that this line goes “through the 
middle” of these instances, represented by points. The objective function, in 

this case, could be defined as follows. Find the parameters 𝛽̂0, 𝛽̂1  representing 
a line such that the mean of the squared distance of the points to this line is 

minimal. Or, in other words, find a model y ̂ = 𝛽̂0 + 𝛽̂1 × x1, called a univariate 

linear model, such that the MSE between yi and y ̂i is minimal, considering all 

the instances (xi, yi) in the training set where i = 1, … , n. Formally, this can be 
written as: 
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Given the training data of our example, the optimal values for 𝛽̂0 and 𝛽̂1 are 
128.017 and 0.611, respectively. 

For multivariate linear regression – the linear model generalized for any num- 
ber p of predictive attributes – the model is expressed as: 

p 

ŷ = 𝛽0 + 𝛽j × xj (8.7) 

j=1 

where p is the number of predictive attributes, 𝛽̂0 is the value of ŷ when all xj = 0 

and 𝛽 ̂i is the slope of the linear model according to the jth axis: the variation of y ̂ 
per unit of variation of xj. 

Take a quick look at the notation: xj means the jth attribute of some 
object x represented as a tuple x = (x1, … , xj, … , xp). Since our data con- sists 

of more instances x1, x2, … , xn, the ith instance will be denoted as xi = 

(xi
1 
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j 
, … , xi

p 
), xi

j   
corresponding to its jth attribute. 

The values of 𝛽0, 𝛽1, … , 𝛽p are estimated using an appropriate optimization 
method to minimize the following objective function 
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for n instances with p predictive attributes. 

8.1.1.1 Empirical Error 

Remember that we have only the training set available during the learning, thus, 
the error is also measured on this set while the model is learned. If we denote the 

(squared) deviation (yi − ŷi)2 as error(yi, ŷi), the objective functions, introduced 

in equations (8.6) and (8.8), considering the given instances x1, x2, … , xn, can 
be written as 

argmin 
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error(yi, ŷi) (8.9) 
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error(yi, ŷi) (8.10) 

 

respectively for univariate and multivariate linear regression. 

The error measured on the training set is called the empirical error or empir- ical loss, and measures the 
deviation between the predicted (ŷi) and measured (yi) values for training instances (xi). 

The assumptions made about the errors – the unexplained variation of y – by the multivariate linear 
model are: 

• they are independent and identically distributed, an assumption that suffers when there is 
collinearity between predictive attributes 

• homoscedasticity: there is homogeneous variance, as depicted in Figure 8.7 
• normal distribution: a condition that can be verified by comparing the theo- retical distribution and 

the data distribution. 

The breach of these assumptions can result in an inaccurate definition of the coefficients 𝛽̂i. 

Assessing and evaluating results The main result of MLR is the estimates of the 

𝛽̂i coefficients. The 𝛽̂0 coefficient is often named coefficient or 𝛼̂. Do not forget that knowing the values of 

all 𝛽̂i, for i = 0, ..., p, it is possible to estimate the target value of new unlabeled instances. Moreover, the 

estimates 𝛽̂1, 𝛽̂2, … , 𝛽̂p express the influence of the attribute values x1, x2, … , xp of an instance x on its target 

value y. The sign of 𝛽̂i corresponds to the importance of the attribute xi on y. For positive 𝛽̂i, the value xi 
positively influences the value of y, while for negative 𝛽̂i the influence of xi on y is negative. 

Advantages and disadvantages of LR The interpretability of linear regres- sion models is one reason 
for their popularity. Another is that LR has no hyper-parameters. Table 8.2 summarizes the 
main advantages and disadvantages of LR. 
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Figure 8.7 Approximately homogeneous variance between diameter and height and nonhomogeneous variance 

between diameter and age. This data is about the shellfish Haliotis moluscus, also known as abalone. It is a food source 

in several human cultures. The shells are used as decorative items. 

 
 

Multivariate linear regression suffers when the data set has a large number of predictive attributes. 
This can be overcome by using one of the following approaches: 

• using an attribute selection method to reduce dimensionality (review the attribute selection 
methods described in Section 4.5.2) 

• shrinking the weights 
• using linear combinations of attributes instead of the original predictive attributes. 

Shrinkage methods and linear combination of attributes is discussed next. But before then, there is a 
discussion of the bias–variance trade-off, an impor- tant concept in understanding shrinkage 
methods. 

 

 


